Oxidation of Mg films monitored with Mg/p-Si(111) Schottky diodes

Project A1 – H. Nienhaus
Co-workers: S. Glass, R. Nünthel, D. Krix

Principle of chemicurrents

- Non-adiabatic dissipation of chemical reaction energy
- Hot charge carrier detection with thin metal film
- Schottky diodes: hot electrons → n-type diodes
- Hot holes → p-type diodes
- Schottky barrier height $\Phi(Si) = 0.5 - 1$ eV

Exoemission and chemiluminescence with O$_2$ → Mg

- Deposited energy: ≈ 2.4 eV/molecule
- Chemiluminescence (CL) and exo-electron emission (EE)
- Work function (Φ) reduction with O coverage
- Open question: CL and EE transients due to Φ variation??

Chemicurrents in Mg/p-Si Schottky diodes during O$_2$ exposure

- Evidence of surface chemiluminescence with type I diodes
- Exponential attenuation
- Larger attenuation constants with type II diodes

Diode properties from I-V curves:
- Type I: inhomogeneous
 - Ideal factor $n = 1.4 - 2.7$
 - Effect barrier $\Phi_0 = 0.6 - 0.87 = 0.66 - 0.76$ eV
 - Homog. barrier $\Phi_{bar} = 0.8$ eV
- Type II: homogeneous
 - Effect barrier $\Phi_0 = 0.72$ eV
 - Homog. barrier $\Phi_{bar} = 0.7$ eV

Spectroscopy of hot charge carriers

- Three-step model:
 - Particle
 - D: Hot hole distribution
 - A: Attenuation
 - T: Transmission

Kinetics

- Oxygen coverage proportional to detected charge in the diode:

Conclusions

- Chemicurrent method much more sensitive than exoelectron emission
- Efficient correlated to diode preparation and homogeneous Schottky barrier height
- No work function affect! Chemisistant transient with maximum exclusively related to chemical reaction kinetics
- Reaction rate increases with O coverage in the low-coverage regime