Ultra-Fast Time Resolved Electron Diffraction at Surfaces

S. Möllenbeck, A. Hanisch, T. Pelka, P. Schneider, B. Krenzer, M. Horn-von Hoegen

Thin Films

Thin Bi-films on Si(111) and Si(111) have been investigated.

On Si(001) two different treatments were used:
- a) Bi deposition on Si(001)-(c4x2) at 300 K.
- b) Bi deposition (2.8 nm) on Si(001) at 150 K annealed at 420 K and additional deposition at 400 K.

Acoustic Mismatch Model

The transmission probability can be calculated by a theoretical formula. Within phonons are described as elastic waves. In analogy to optics the “Fresnel”-equations or “Snells Law” can be used to describe total internal reflection of the phonons at the interface. Due to the large difference in the speed of sounds only a small amount of phonons can cross the interface.

Thickness Dependence

Using the thickness dependence of the decay constant τ_c, we can compare the theoretical Thermal Boundary Conductance of the AWM (calculated using bulk values) with the experimental result.

Measurement

After heating the sample the intensity of the diffraction pattern decreases. The intensity decay is converted in a surface temperature measured by using the Dwyer-Effekt. The surface temperature decay depends on the sample's heat diffusion and can be determined in a static experiment.

The transient temperature evolution shows three different regions. They all can be well described by one empirical fit function.

Monolayers Lead (Debye Waller)

This Pb film was prepared on Si(001)-(7x7) at 100 K and slowly annealed to RT. By deposition at 500 K, the coverage was reduced to a coverage of 1 ML. The (4x1) islands form a barrier for thermal diffusion.

Clean Silicon

The order-disorder transition from Si(001)-(c4x2) to (2x1) was investigated.

After flash annealing the sample at 500 K a clear c(4x2) can be observed. Faster preliminary results are shown here. The intensity drops by 4% upon excitation. The intensity of the c(4x2) diffraction spots recover slowly with a time constant of several hundred ps.

These results agree surprisingly well with literature values on the excitation of the electron system.